What are Moment Generating Functions 🌱

The moment-generating function $m(t)$ for a random variable $Y$ is defined as the following:

\[m(t)=E\left(e^{t Y}\right)\]

If $m(t)$ exists, then for any positive integer $k$, the $k$-th derivative of $m(t)$ is:

\[\left.\frac{d^{k} m(t)}{d t^{k}}\right|_{t=0}=m^{(k)}(0)=E\left(Y^{k}\right)\]

This is true because of the following:

\[\begin{aligned} e^{t Y} &=1+\frac{t Y}{1 !}+\frac{t^{2} Y^{2}}{2 !}+\frac{t^{3} Y^{3}}{3 !}+\ldots+\frac{t^{n} Y^{n}}{n !}+\ldots \\ m(t)=E\left[e^{t Y}\right] &=1+t E[Y]+\frac{t^{2}}{2 !} E\left[Y^{2}\right]+\frac{t^{3}}{3 !} E\left[Y^{3}\right]+\ldots+\frac{t^{n}}{n !} E\left[Y^{n}\right]+\ldots \end{aligned}\]

MGF Determines Distribution

Suppose $m_X(t), \ m_Y(t)$ are mgfs of the random variables $X$and $Y$ respectively. If both mgfs exist and $m_X(t) = m_Y(t)$ for all values of $t$, then $X$ and $Y$ have the same probability distribution

Notes mentioning this note

There are no notes linking to this note.


Here are all the notes in this garden, along with their links, visualized as a graph.