
Function Learning Example

3Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Learning Functions from Data

4Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Learning Functions from Data

6Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Learning Functions from Data

9Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Learning Functions from Data

13Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Learning Functions from Data

14Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Statistics From Scratch

16Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Parametric vs. Nonparameteric Modeling

Parametric models:
l Assume that all data can be represented using a fixed, finite number of

parameters.
l Mixture of K Gaussians, polynomial regression, neural nets, etc.

Nonparameteric models:
l Number of parameters can grow with sample size.
l Number of parameters may be random.

l Kernel density estimation.

Bayesian nonparameterics:
l Allow for an infinite number of parameters a priori.
l Models of finite datasets will have only finite number of parameters.
l Other parameters are integrated out.

17

Image: scikit-learn.org

© Eric Xing @ CMU, 2005-2020

Parametric Bayesian Inference

A parametric likelihood:
Prior on θ :
Posterior distribution

is represented as a finite set of parameters

Examples:
• Gaussian distribution prior + 2D Gaussian likelihood → Gaussian posterior distribution

• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution

• Sparsity-inducing priors + some likelihood models → Sparse Bayesian inference

18© Eric Xing @ CMU, 2005-2020

Nonparametric Bayesian Inference

A nonparametric likelihood:
Prior on :
Posterior distribution

Examples:
→ see next slide

is a richer model, e.g., with an infinite set of parameters

19© Eric Xing @ CMU, 2005-2020

probability measure binary matrix

function

Dirichlet Process Prior [Antoniak, 1974]
+ Multinomial/Gaussian/Softmax likelihood

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]
+ Gaussian/Sigmoid/Softmax likelihood

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/Sigmoid/Softmax likelihood

Nonparametric Bayesian Inference

20© Eric Xing @ CMU, 2005-2020

Weight-space View

21

l Consider a simple linear model

© Eric Xing @ CMU, 2005-2020

Function-space View

25

l We are interested in the distribution over functions induced by the
distribution over parameters…

l In fact, we can characterize the properties of these functions directly:

© Eric Xing @ CMU, 2005-2020

Function-space View

26

l Therefore any collection of values has a joint Gaussian distribution (not
because of randomness in X, note that here we have lower-case x which means they are given as fixed, but
because of randomness in the function f):

l Definition:

© Eric Xing @ CMU, 2005-2020

Example: Linear Basis Function Models

27

l Model specification:

l Moments of the the induced distribution over functions:

© Eric Xing @ CMU, 2005-2020

Gaussian Processes

28

Interpretability:
l We are ultimately more interested in – and have stronger intuitions about

– the functions that model our data and weights w in a parametric model.
We can express these intuitions using a covariance kernel.

Generalization:
l The kernel controls the support and inductive biases of our model, and

thus its ability to generalize to unseen.

© Eric Xing @ CMU, 2005-2020

Gaussian Process: Graphical Model

29Image source: GPML book © Eric Xing @ CMU, 2005-2020

Example: RBF kernel

30For intuitions: https://distill.pub/2019/visual-exploration-gaussian-processes/© Eric Xing @ CMU, 2005-2020

https://distill.pub/2019/visual-exploration-gaussian-processes/

Example: RBF kernel

31Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Example: RBF kernel

32Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Gaussian Process Inference

33© Eric Xing @ CMU, 2005-2020

Recap: Multivariate Gaussian Distribution

34

If

then

© Eric Xing @ CMU, 2005-2020

Gaussian Process Inference

36Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Gaussian Process Inference

37Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Gaussian Process Inference

38Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Gaussian Process Learning

39Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Gaussian Process Learning

40Slide credit: Andrew G. Wilson © Eric Xing @ CMU, 2005-2020

Rich Literature on Other Types of Covariance Kernels

41

Kernels as functions of the distance:

© Eric Xing @ CMU, 2005-2020

Rich Literature on Other Types of Covariance Kernels

42

Kernels as functions of the distance: Spectral mixture kernels (Wilson & Adams, 2013)

© Eric Xing @ CMU, 2005-2020

Gaussian Process and Deep Kernel Learning

q By adding GP as a layer to a deep neural net, we can think of it as
adding an infinite hidden layer with a particular prior on the weights

q Deep kernel learning [Wilson et al., 2016]
q Combines the inductive biases of

deep models with the non-parametric
flexibility of Gaussian processes

q GPs add powerful regularization to
the network

q Additionally, they provide predictive
uncertainty estimates

43© Eric Xing @ CMU, 2005-2020

Deep Kernel Learning

44

l Combines inductive biases of deep learning architectures with the
nonparametric flexibility of Gaussian processes.

l Starting from some base kernel, we can get a deep kernel using
functional composition:

Wilson et al., NIPS 2016 © Eric Xing @ CMU, 2005-2020

Learning Deep Kernels

45

l Learn base kernel hyperparameters and neural network parameters jointly.

l Use the chain rule to compute derivatives of the log marginal likelihood
w.r.t. the deep kernel hyperparameters:

l To make the model scalable, inducing point methods can be applied.

Wilson et al., NIPS 2016 © Eric Xing @ CMU, 2005-2020

Deep Kernel Learning for Regression

46Wilson et al., NIPS 2016 © Eric Xing @ CMU, 2005-2020

Deep Kernel Learning on Sequential Data

47

What if we have data of
sequential nature?

Can we still apply the same
reasoning and build rich
nonparametric models on top
recurrent nets?

Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020

Deep Kernel Learning on Sequential Data

48

The answer is YES!

By adding a GP layer to a recurrent
network, we effectively correlate
samples across time and get
predictions along with well
calibrated uncertainty estimates.

Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020

Deep Kernel Learning on Sequential Data

49

Lane prediction: LSTM vs GP-LSTM

�5 0 50

10

20

30

40

50

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

�5 0 50

10

20

30

40

50

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020

Deep Kernel Learning on Sequential Data

50Al-Shedivat et al., JMLR 2017

Lead vehicle prediction: LSTM vs GP-LSTM

�5 0 50

20

40

60

80

100

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

�5 0 50

20

40

60

80

100

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

© Eric Xing @ CMU, 2005-2020

The Scalability Issue

51© Eric Xing @ CMU, 2005-2020

Scaling Up Gaussian Processes

52© Eric Xing @ CMU, 2005-2020

Inducing Point Methods

53Slide credit: Zoubin Ghahramani (MLSS, 2011) © Eric Xing @ CMU, 2005-2020

Inducing Point Methods

54Images: GPML library docs

Grids are tricky:
In high dimensions, one would need a LOT of inducing points to build a high-dimensional grid.
This might drastically affect efficiency.

Further reading:
Wilson, Dann, Nickisch (2015). Thoughts on Massively Scalable Gaussian Processes
Bauer, van der Wilk, Rasmussen (2016). Understanding Probabilistic Sparse Gaussian Process Approximations.

© Eric Xing @ CMU, 2005-2020

Massively Scalable GPs: O(n) training, O(1) inference

55Image source: Al-Shedivat et al., JMLR 2017 © Eric Xing @ CMU, 2005-2020

Running Exact GPs on GPUs (recent)

56Wang et al. (2019). Exact Gaussian Processes on a Million Data Points (arXiv:1903.08114)

Key idea: Use a clever distributed GP learning and inference algorithm that runs on multiple GPUs.

© Eric Xing @ CMU, 2005-2020

Gaussian Process Software

57

1) Classic MATLAB-based:

2) Keras-based (GPs as DL layers!) 4) TensorFlow (T2T library)

Tran et al. (2018) arXiv:1812.03973

3) PyTorch-based

Gardner et al. (2018) arXiv:1809.11165 © Eric Xing @ CMU, 2005-2020

Summary

l Gaussian process are Bayesian nonparametric models that can
represent distributions over smooth functions.

l Using expressive covariance kernel functions, GPs can model a variety of
data (scalar, vector, sequential, structured, etc.).

l Inference can be done fully analytically (in case of Gaussian likelihood).
l Inference and learning are very computationally costly since exact

methods require large matrix inversions.
l There is a variety of approximation methods to GPs that can bring down

the learning and inference cost to O(n) and O(1), respectively.
l Many new libraries based on TF, PyTorch, Keras – GP models despite

computational constraints, GPs are certainly quite popular.

58© Eric Xing @ CMU, 2005-2020

Gaussian Process for Hyperparameter Tuning

© Eric Xing @ CMU, 2005-2020 59

Hyperparameter Tuning

q Existing methods
q Grid search
q Graduate student descent

q Problems
q Time-consuming
q Labor-intensive

© Eric Xing @ CMU, 2005-2020 60

Automatic Hyperparameter Tuning

q Generalization performance (e.g., error rate) is a function of hyperparameters.

q If knowing this function, we can perform optimization to search for the optimal
hyperparameters yielding the lowest error.

q This function is a black-box and (almost surely) has no closed-form solutions.

q Solution: use a highly-expressive and easily-operable proxy function to
approximate the true function and perform optimization on the proxy function.

q Family of proxy functions: Gaussian Process

© Eric Xing @ CMU, 2005-2020 61

Gaussian Process for Hyperparameter Tuning

q Obtain a set S of (hyperparameter-configuration, error) pairs using grid
search or graduate student descent

q Repeat
q Fit a Gaussian process on the (hyperparameter, error) pairs in S

q Based on the fitted Gaussian process, select a hyperparameter configuration
H and measure the error E given H

q Add the (H, E) pair to S

© Eric Xing @ CMU, 2005-2020 62

How to select hyperparameter configuration?

q Tradeoff between exploration and exploitation.
q Exploitation: search over the “promising” hyperparameter space

q The “promising” space is more likely to contain the best hyperparameters.
q Hyperparameter space yielding lower GP function values is more promising.

q Exploration: search over the entire hyperparameter space
q The “promising” space may not contain the best hyperparameters.
q Try other spaces as well
q Space having more “uncertainty” is more worthwhile to try.

© Eric Xing @ CMU, 2005-2020 63

“Promising” and “Uncertain”

© Eric Xing @ CMU, 2005-2020 64

Hyperparameter

Error

Promising but
not uncertain

Promising
and uncertain

Uncertain but
not promising

Promising: Hyperparameters
yielding low GP mean

Uncertain: Hyperparameters
yielding large GP variance

Acquisition Function

© Eric Xing @ CMU, 2005-2020 65

• Hyperparameters that are more
promising and more uncertain
have larger acquisition function
value.

• Select the hyperparameter with
the largest acquisition function
value to try.

Hyperparameter

Accuracy

Promising but
not uncertain

Promising
and uncertain

Uncertain but
not promising

Acquisition
function

Define Acquisition Function

© Eric Xing @ CMU, 2005-2020 66

Predictive mean
function of GP posterior

Predictive marginal variance
function of GP posterior

Current lowest error

q Probability of Improvement (Kushner 1964):

q Φ(#) is the cumulative density function of a normal distribution.

Define Acquisition Function (Cont’d)

© Eric Xing @ CMU, 2005-2020 67

q Expected Improvement (Mockus 1978):

q GP Upper Confidence Bound (Srinivas et al. 2010):

Illustration

© Eric Xing @ CMU, 2005-2020 68

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 69

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 70

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 71

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 72

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 73

Figure Courtesy:
Ryan Adams

Illustration

© Eric Xing @ CMU, 2005-2020 74

Figure Courtesy:
Ryan Adams

Summary

q Use GP to tune hyperparameters

q Iteratively fit GP to approximate the true hyperparameter-error function

q Select hyperparameters that have low GP mean and high GP variance to
try

q Acquisition function simultaneously considers GP mean and variance.

© Eric Xing @ CMU, 2005-2020 75

Elements of Meta-learning and Neural Processes

© Eric Xing @ CMU, 2005-2020 76

Example: Fast Learning of Functions

l So far, we assumed that data was generated by a single function.
l What if there are multiple data-generating functions, and each time we

get only a few points from one of them. Can we identify it?

77© Eric Xing @ CMU, 2005-2020

What is meta-learning?

78

l Standard learning: Given a distribution over examples (single task), learn
a function that minimizes the loss

l Learning-to-learn: Given a distribution over tasks, output an adaptation
rule that can be used at test time to generalize from a task description

distribution over
tasks/datasets

distribution over
examples for task T

adaptation rule takes
a task description as input
and outputs a model

© Eric Xing @ CMU, 2005-2020

Example: Few-shot Image Classification

79

Considered in:
Lake et al., ‘15
Vinyals et al., ‘16
Santoro et al., ‘16
Ravi, Larochelle, ‘17
Finn et al., ‘17
...

Image: bair.berkeley.edu © Eric Xing @ CMU, 2005-2020

Conditional Neural Processes

83

CNP architecture:

Garnelo et al., ICML 2018 © Eric Xing @ CMU, 2005-2020

Summary

l There are cases when learning a single function is not enough –
contextual models are used in such case.

l Few-shot learning is a popular application of meta-learning, where
contextual models are trained on distributions of different tasks.
Examples:
l Solve different sub-problems
l Imitate different demonstrations
l Make predictions about different user preferences

l Neural processes propose an alternative to kernel learning (kernel
becomes fully implicit; the model is scalable without approximations)

89© Eric Xing @ CMU, 2005-2020

