











## Learning Functions from Data

Guess the parametric form of a function that could fit the data

- $f(x, w) = w^{\mathrm{T}}x$  [Linear function of w and x]
- $f(x, w) = w^{T} \phi(x)$  [Linear function of w] (Linear Basis Function Model)

►  $f(x, w) = g(w^T \phi(x))$  [Non-linear in x and w] (E.g., Neural Network)

 $\phi(x)$  is a vector of basis functions. For example, if  $\phi(x) = (1, x, x^2)$  and  $x \in \mathbb{R}^1$  then  $f(x, w) = w_0 + w_1 x + w_2 x^2$  is a quadratic function.

Choose an error measure E(w), minimize with respect to w

• 
$$E(w) = \sum_{i=1}^{N} [f(x_i, w) - y(x_i)]^2$$

# Learning Functions from Data

### A probabilistic approach

We could explicitly account for noise in our model.

►  $y(x) = f(x, w) + \epsilon(x)$ , where  $\epsilon(x)$  is a noise function.

One commonly takes  $\epsilon(x) = \mathcal{N}(0, \sigma^2)$  for i.i.d. additive Gaussian noise, in which case

$$p(y(x)|x, w, \sigma^2) = \mathcal{N}(y(x); f(x, w), \sigma^2)$$
 Observation Model  
$$p(y|x, w, \sigma^2) = \prod_{i=1}^{N} \mathcal{N}(y(x_i); f(x_i, w), \sigma^2)$$
 Likelihood

• Maximize the likelihood of the data  $p(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2)$  with respect to  $\sigma^2, \mathbf{w}$ .



## Learning Functions from Data

- The probabilistic approach helps us interpret the error measure in a deterministic approach, and gives us a sense of the noise level  $\sigma^2$ .
- Probabilistic methods thus provide an intuitive framework for representing uncertainty, and model development.
- Both approaches are prone to *over-fitting* for flexible f(x, w): low error on the training data, high error on the test set.

#### Regularization

Use a penalized log likelihood (or error function), such as

$$\log p(\mathbf{y}|X, \mathbf{w}) \propto -\frac{1}{2\sigma^2} \sum_{i=1}^n (f(x_i, \mathbf{w}) - y(x_i)^2) \qquad \overbrace{-\lambda \mathbf{w}^{\mathrm{T}} \mathbf{w}}^{\text{complexity penalty}} .$$

- But how should we define complexity, and how much should we penalize complexity?
- Can set  $\lambda$  using *cross-validation*.





Bayes' Rule

p(a|b) = p(b|a)p(a)/p(b),  $p(a|b) \propto p(b|a)p(a)$ .

posterior = 
$$\frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$
,  $p(w|y, X, \sigma^2) = \frac{p(y|X, w, \sigma^2)p(w)}{p(y|X, \sigma^2)}$ 





**Predictive Distribution** 

$$p(y|x_*, \mathbf{y}, \mathbf{X}) = \int p(y|x_*, \mathbf{w}) p(\mathbf{w}|\mathbf{y}, \mathbf{X}) d\mathbf{w} \, .$$

- Average of infinitely many models weighted by their posterior probabilities.
- ► No over-fitting, automatically calibrated complexity.
- Typically more interested in distribution over functions than in parameters w.



© Eric Xing @ CMU, 2005-2020

## Parametric vs. Nonparameteric Modeling

#### Parametric models:

- Assume that all data can be represented using a fixed, finite number of parameters.
  - Mixture of K Gaussians, polynomial regression, neural nets, etc.

#### Nonparameteric models:

- Number of parameters can grow with sample size.
- Number of parameters may be random.
  - Kernel density estimation.

#### Bayesian nonparameterics:

- Allow for an infinite number of parameters a priori.
- Models of finite datasets will have only finite number of parameters.
- Other parameters are integrated out.







 ${\cal M}$  is represented as a finite set of parameters  $\, heta$ 

- A parametric likelihood:  $\mathbf{x} \sim p(\cdot | \theta)$
- Prior on  $\theta$ :

- $\pi(\theta)$
- Posterior distribution

$$p(\theta|\mathbf{x}) = \frac{p(\mathbf{x}|\theta)\pi(\theta)}{\int p(\mathbf{x}|\theta)\pi(\theta)d\theta} \propto p(\mathbf{x}|\theta)\pi(\theta)$$

#### **Examples:**

- Gaussian distribution prior + 2D Gaussian likelihood → Gaussian posterior distribution
- Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution
- Sparsity-inducing priors + some likelihood models → Sparse Bayesian inference





 ${\cal M}$  is a richer model, e.g., with an infinite set of parameters

- A nonparametric likelihood:  $\mathbf{x} \sim p(\cdot | \mathcal{M})$
- Prior on  $\mathcal{M}$ :  $\pi(\mathcal{M})$
- Posterior distribution

$$p(\mathcal{M}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})}{\int p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})d\mathcal{M}} \propto p(\mathbf{x}|\mathcal{M})\pi(\mathcal{M})$$

#### Examples: → see next slide



# Nonparametric Bayesian Inference



Dirichlet Process Prior [Antoniak, 1974] + Multinomial/Gaussian/Softmax likelihood idian Buffet Process Prior [Griffiths & Gharamani, 2005] + Gaussian/Sigmoid/Softmax likelihood



Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006] + Gaussian/Sigmoid/Softmax likelihood

© Eric Xing @ CMU, 2005-2020



• Consider a simple linear model

 $f(x) = a_0 + a_1 x \,,$  $a_0, a_1 \sim \mathcal{N}(0, 1) \,.$ 







- We are interested in the distribution over functions induced by the distribution over parameters...
- In fact, we can characterize the properties of these functions directly:

$$f(x|a_0, a_1) = a_0 + a_1 x, \qquad a_0, a_1 \sim \mathcal{N}(0, 1).$$
$$\mathbb{E}[f(x)] = \mathbb{E}[a_0] + \mathbb{E}[a_1]x = 0.$$
$$\operatorname{cov}[f(x_b), f(x_c)] = \mathbb{E}[f(x_b)f(x_c)] - \mathbb{E}[f(x_b)]\mathbb{E}[f(x_c)]$$
$$= \mathbb{E}[a_0^2 + a_0a_1(x_b + x_c) + a_1^2x_bx_c] - 0$$
$$= \mathbb{E}[a_0^2] + \mathbb{E}[a_1^2x_bx_c] + \mathbb{E}[a_0a_1(x_b + x_c)]$$
$$= 1 + x_bx_c + 0$$
$$= 1 + x_bx_c.$$





Definition:

• Therefore any collection of values has a joint Gaussian distribution (not because of randomness in X, note that here we have lower-case x which means they are given as fixed, but because of randomness in the function f):

$$f(x_1),\ldots,f(x_N)] \sim \mathcal{N}(0,K),$$
  
 $K_{ij} = \operatorname{cov}(f(x_i),f(x_j)) = k(x_i,x_j) = 1 + x_b x_c.$ 

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian distribution. We write  $f(x) \sim \mathcal{GP}(m, k)$  to mean

$$[f(x_1),\ldots,f(x_N)] \sim \mathcal{N}(\boldsymbol{\mu},K) \tag{30}$$

$$u_i = m(x_i) \tag{31}$$

$$K_{ij} = k(x_i, x_j), \qquad (32)$$

for any collection of input values  $x_1, \ldots, x_N$ . In other words, f is a GP with mean function m(x) and *covariance kernel*  $k(x_i, x_j)$ .



## **Example: Linear Basis Function Models**

Model specification:

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(x)$$
$$p(\boldsymbol{w}) = \mathcal{N}(0, \Sigma_{w})$$

• Moments of the the induced distribution over functions:

$$\mathbb{E}[f(x, \boldsymbol{w})] = m(x) = \mathbb{E}[\boldsymbol{w}^{\mathrm{T}}]\boldsymbol{\phi}(x) = 0$$
  

$$\operatorname{cov}(f(x_i), f(x_j)) = k(x_i, x_j) = \mathbb{E}[f(x_i)f(x_j)] - \mathbb{E}[f(x_i)]\mathbb{E}[f(x_j)]$$
  

$$= \boldsymbol{\phi}(x_i)^{\mathrm{T}}\mathbb{E}[\boldsymbol{w}\boldsymbol{w}^{\mathrm{T}}]\boldsymbol{\phi}(x_j) - 0$$
  

$$= \boldsymbol{\phi}(x_i)^{\mathrm{T}}\Sigma_w \boldsymbol{\phi}(x_j)$$

*f*(*x*, *w*) is a Gaussian process, *f*(*x*) ~ N(*m*, *k*) with mean function *m*(*x*) = 0 and covariance kernel *k*(*x<sub>i</sub>*, *x<sub>j</sub>*) = φ(*x<sub>i</sub>*)<sup>T</sup>Σ<sub>w</sub>φ(*x<sub>j</sub>*).



### Interpretability:

 We are ultimately more interested in – and have stronger intuitions about – the *functions* that model our data and weights w in a parametric model. We can express these intuitions using a covariance kernel.

### Generalization:

• The kernel controls the support and inductive biases of our model, and thus its ability to generalize to unseen.











$$k_{\text{RBF}}(x, x') = \operatorname{cov}(f(x), f(x')) = a^2 \exp(-\frac{||x - x'||^2}{2\ell^2})$$

- Far and above the most popular kernel.
- Expresses the intuition that function values at nearby inputs are more correlated than function values at far away inputs.
- The kernel *hyperparameters a* and  $\ell$  control amplitudes and wiggliness of these functions.
- GPs with an RBF kernel have large support and are *universal* approximators.







$$k_{\text{RBF}}(x, x') = \operatorname{cov}(f(x), f(x')) = a^2 \exp(-\frac{||x - x'||^2}{2\ell^2})$$



31





Gaussian process sample prior functions



## **Gaussian Process Inference**

- Observed noisy data  $y = (y(x_1), \dots, y(x_N))^T$  at input locations *X*.
- Start with the standard regression assumption:  $\mathcal{N}(y(x); f(x), \sigma^2)$ .
- Place a Gaussian process distribution over noise free functions
   f(x) ~ GP(0, k<sub>θ</sub>). The kernel k is parametrized by θ.
- ► Infer p(f<sub>\*</sub>|y, X, X<sub>\*</sub>) for the noise free function f evaluated at test points X<sub>\*</sub>.



# **Recap:** Multivariate Gaussian Distribution



If  $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{1,2}^T & k_{2,2} \end{bmatrix}\right)$ then  $y_1 | y_2 \sim \mathcal{N}\left(\mu_1 + k_{1,2}k_{2,2}^{-1}(y_2 - \mu_2), k_{1,1} - k_{1,2}k_{2,2}^{-1}k_{1,2}^T\right)$ 



## **Gaussian Process Inference**

- Observed noisy data  $y = (y(x_1), \ldots, y(x_N))^T$  at input locations X.
- Start with the standard regression assumption:  $\mathcal{N}(y(x); f(x), \sigma^2)$ .
- Place a Gaussian process distribution over noise free functions
   f(x) ~ GP(0, k<sub>θ</sub>). The kernel k is parametrized by θ.
- ► Infer p(f<sub>\*</sub>|y, X, X<sub>\*</sub>) for the noise free function f evaluated at test points X<sub>\*</sub>.

#### Joint distribution

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} K_{\theta}(X, X) + \sigma^2 I & K_{\theta}(X, X_*) \\ K_{\theta}(X_*, X) & K_{\theta}(X_*, X_*) \end{bmatrix} \right) \,.$$

**Conditional predictive distribution** 

$$\begin{split} f_*|X_*, X, \mathbf{y}, \mathbf{\theta} &\sim \mathcal{N}(\bar{f}_*, \operatorname{cov}(f_*)) \,, \\ \bar{f}_* &= K_{\theta}(X_*, X) [K_{\theta}(X, X) + \sigma^2 I]^{-1} \mathbf{y} \,, \\ \operatorname{cov}(f_*) &= K_{\theta}(X_*, X_*) - K_{\theta}(X_*, X) [K_{\theta}(X, X) + \sigma^2 I]^{-1} K_{\theta}(X, X_*) \end{split}$$



## **Gaussian Process Inference**

- Specify  $f(x) \sim \mathcal{GP}(0,k)$ .
- Choose  $k_{\text{RBF}}(x, x') = a_0^2 \exp(-\frac{||x-x'||^2}{2\ell_0^2})$ . Choose values for  $a_0$  and  $\ell_0$ .
- Observe data, look at the prior and posterior over functions.





Increase the length-scale  $\ell$ .







## **Gaussian Process Learning**

• We can integrate away the entire Gaussian process f(x) to obtain the marginal likelihood, as a function of kernel hyperparameters  $\theta$  alone.

$$p(\mathbf{y}|\boldsymbol{\theta}, X) = \int p(\mathbf{y}|\boldsymbol{f}, X) p(\boldsymbol{f}|\boldsymbol{\theta}, X) d\boldsymbol{f} \,. \tag{48}$$









1. Learning: Optimize marginal likelihood,

$$\log p(\mathbf{y}|\boldsymbol{\theta}, X) = \overbrace{-\frac{1}{2}\mathbf{y}^{\mathrm{T}}(K_{\boldsymbol{\theta}} + \sigma^{2}I)^{-1}\mathbf{y}}^{\mathrm{model fit}} - \overbrace{\frac{1}{2}\log|K_{\boldsymbol{\theta}} + \sigma^{2}I|}^{\mathrm{complexity penalty}} - \frac{N}{2}\log(2\pi),$$

with respect to kernel hyperparameters  $\theta$ .

2. Inference: Conditioned on kernel hyperparameters  $\theta$ , form the predictive distribution for test inputs  $X_*$ :

$$egin{aligned} &f_*|X_*,X,oldsymbol{y},oldsymbol{ heta}&\sim\mathcal{N}(ar{f}_*, ext{cov}(f_*))\,,\ &ar{f}_*&=K_ heta(X_*,X)[K_ heta(X,X)+\sigma^2I]^{-1}oldsymbol{y}\,,\ & ext{cov}(f_*)&=K_ heta(X_*,X_*)-K_ heta(X_*,X)[K_ heta(X,X)+\sigma^2I]^{-1}K_ heta(X,X_*)\,. \end{aligned}$$



© Eric Xing @ CMU, 2005-2020

### **Rich Literature on Other Types of Covariance Kernels**

$$k_{\text{Matern}}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \Big(\frac{\sqrt{2\nu}r}{\ell}\Big)^{\nu} K_{\nu}\Big(\frac{\sqrt{2\nu}r}{\ell}\Big)$$



## Rich Literature on Other Types of Covariance Kernels

Kernels as functions of the distance:

$$k_{\rm SE}(\tau) = \exp(-0.5\tau^2/\ell^2)$$

$$k_{\rm MA}(\tau) = a(1 + \frac{\sqrt{3}\tau}{\ell})\exp(-\frac{\sqrt{3}\tau}{\ell})$$

$$k_{\rm RQ}(\tau) = (1 + \frac{\tau^2}{2\,\alpha\,\ell^2})^{-\alpha}$$

$$k_{\rm PE}(\tau) = \exp(-2\sin^2(\pi\,\tau\,\omega)/\ell^2)$$

Spectral mixture kernels (Wilson & Adams, 2013)





## **Gaussian Process and Deep Kernel Learning**

- By adding GP as a layer to a deep neural net, we can think of it as adding an infinite hidden layer with a particular prior on the weights
- Deep kernel learning [Wilson et al., 2016]
  - Combines the inductive biases of deep models with the non-parametric flexibility of Gaussian processes
  - GPs add powerful regularization to the network
  - Additionally, they provide predictive uncertainty estimates





- Combines inductive biases of deep learning architectures with the nonparametric flexibility of Gaussian processes.
- Starting from some base kernel, we can get a deep kernel using functional composition:

$$\kappa(x,x') = k(h(x),h(x'))$$







- Learn base kernel hyperparameters and neural network parameters jointly.
- Use the chain rule to compute derivatives of the log marginal likelihood w.r.t. the deep kernel hyperparameters:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{L}}{\partial K_{\boldsymbol{\gamma}}} \frac{\partial K_{\boldsymbol{\gamma}}}{\partial \boldsymbol{\theta}}, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial K_{\boldsymbol{\gamma}}} \frac{\partial K_{\boldsymbol{\gamma}}}{\partial g(\mathbf{x}, \mathbf{w})} \frac{\partial g(\mathbf{x}, \mathbf{w})}{\partial \mathbf{w}}$$

• To make the model scalable, inducing point methods can be applied.





| Datasets   | n               | d   | RMSE                |                     |                     |                     |                     |                   |
|------------|-----------------|-----|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|
|            |                 |     | GP                  |                     |                     | DNN                 | DKL                 |                   |
|            |                 |     | RBF                 | $\mathbf{SM}$       | best                |                     | RBF                 | $\mathbf{SM}$     |
| Gas        | 2,565           | 128 | $0.21 {\pm} 0.07$   | $0.14{\pm}0.08$     | $0.12{\pm}0.07$     | $0.11 {\pm} 0.05$   | $0.11 {\pm} 0.05$   | $0.09{\pm}0.06$   |
| Skillcraft | 3,338           | 19  | $1.26 \pm 3.14$     | $0.25{\pm}0.02$     | $0.25{\pm}0.02$     | $0.25{\pm}0.00$     | $0.25{\pm}0.00$     | $0.25{\pm}0.00$   |
| SML        | 4,137           | 26  | $6.94 {\pm} 0.51$   | $0.27 {\pm} 0.03$   | $0.26 {\pm} 0.04$   | $0.25{\pm}0.02$     | $0.24{\pm}0.01$     | $0.23{\pm}0.01$   |
| Parkinsons | 5,875           | 20  | $3.94{\pm}1.31$     | $0.00{\pm}0.00$     | $0.00{\pm}0.00$     | $0.31{\pm}0.04$     | $0.29 {\pm} 0.04$   | $0.29{\pm}0.04$   |
| Pumadyn    | 8,192           | 32  | $1.00{\pm}0.00$     | $0.21{\pm}0.00$     | $0.20{\pm}0.00$     | $0.25{\pm}0.02$     | $0.24{\pm}0.02$     | $0.23{\pm}0.02$   |
| PoleTele   | 15,000          | 26  | $12.6{\pm}0.3$      | $5.40{\pm}0.3$      | $4.30{\pm}0.2$      | $3.42{\pm}0.05$     | $3.28{\pm}0.04$     | $3.11{\pm}0.07$   |
| Elevators  | 16,599          | 18  | $0.12{\pm}0.00$     | $0.090 {\pm} 0.001$ | $0.089 {\pm} 0.002$ | $0.099 {\pm} 0.001$ | $0.084{\pm}0.002$   | $0.084{\pm}0.002$ |
| Kin40k     | 40,000          | 8   | $0.34{\pm}0.01$     | $0.19{\pm}0.02$     | $0.06 {\pm} 0.00$   | $0.11{\pm}0.01$     | $0.05{\pm}0.00$     | $0.03{\pm}0.01$   |
| Protein    | 45,730          | 9   | $1.64{\pm}1.66$     | $0.50 {\pm} 0.02$   | $0.47 {\pm} 0.01$   | $0.49 {\pm} 0.01$   | $0.46 {\pm} 0.01$   | $0.43{\pm}0.01$   |
| KEGG       | 48,827          | 22  | $0.33{\pm}0.17$     | $0.12{\pm}0.01$     | $0.12{\pm}0.01$     | $0.12{\pm}0.01$     | $0.11{\pm}0.00$     | $0.10{\pm}0.01$   |
| CTslice    | 53,500          | 385 | $7.13 {\pm} 0.11$   | $2.21{\pm}0.06$     | $0.59 {\pm} 0.07$   | $0.41{\pm}0.06$     | $0.36{\pm}0.01$     | $0.34{\pm}0.02$   |
| KEGGU      | $63,\!608$      | 27  | $0.29{\pm}0.12$     | $0.12{\pm}0.00$     | $0.12{\pm}0.00$     | $0.12{\pm}0.00$     | $0.11{\pm}0.00$     | $0.11{\pm}0.00$   |
| 3Droad     | $434,\!874$     | 3   | $12.86 {\pm} 0.09$  | $10.34 {\pm} 0.19$  | $9.90{\pm}0.10$     | $7.36{\pm}0.07$     | $6.91{\pm}0.04$     | $6.91{\pm}0.04$   |
| Song       | $515,\!345$     | 90  | $0.55{\pm}0.00$     | $0.46{\pm}0.00$     | $0.45{\pm}0.00$     | $0.45{\pm}0.02$     | $0.44{\pm}0.00$     | $0.43{\pm}0.01$   |
| Buzz       | 583,250         | 77  | $0.88{\pm}0.01$     | $0.51{\pm}0.01$     | $0.51{\pm}0.01$     | $0.49{\pm}0.00$     | $0.48{\pm}0.00$     | $0.46{\pm}0.01$   |
| Electric   | $2,\!049,\!280$ | 11  | $0.230 {\pm} 0.000$ | $0.053 {\pm} 0.000$ | $0.053 {\pm} 0.000$ | $0.058{\pm}0.002$   | $0.050 {\pm} 0.002$ | $0.048{\pm}0.002$ |



## **Deep Kernel Learning on Sequential Data**

What if we have data of sequential nature?

Can we still apply the same reasoning and build rich nonparametric models on top recurrent nets?



## **Deep Kernel Learning on Sequential Data**

The answer is **YES**!

By adding a GP layer to a recurrent network, we effectively correlate samples across time and get predictions along with well calibrated uncertainty estimates.





Lane prediction: LSTM vs GP-LSTM







#### Lead vehicle prediction: LSTM vs GP-LSTM





- Computational bottlenecks for GPs:
  - Inference:  $(K_{\theta} + \sigma^2 I)^{-1} \mathbf{y}$  for  $n \times n$  matrix K.
  - Learning:  $\log |K_{\theta} + \sigma^2 I|$ , for marginal likelihood evaluations needed to learn  $\theta$ .
- Both inference and learning naively require O(n<sup>3</sup>) operations and O(n<sup>2</sup>) storage (typically from computing a Cholesky decomposition of K). Afterwards, the predictive mean and variance cost O(n) and O(n<sup>2</sup>) per test point.





### Three Families of Approaches

- Approximate non-parametric kernels in a finite basis 'dual space'. Requires \$\mathcal{O}(m^2n)\$ computations and \$\mathcal{O}(m)\$ storage for \$m\$ basis functions. Examples: SSGP, Random Kitchen Sinks, Fastfood, À la Carte.
- Inducing point based sparse approximations. Examples: SoR, FITC, KISS-GP.
- Exploit existing structure in K to quickly (and exactly) solve linear systems and log determinants. Examples: Toeplitz and Kronecker methods.





We can approximate GP through M < N inducing points  $\bar{\mathbf{f}}$  to obtain this Sparse Pseudo-input Gaussian process (SPGP) prior:  $p(\mathbf{f}) = \int d\bar{\mathbf{f}} \prod_n p(f_n | \bar{\mathbf{f}}) p(\bar{\mathbf{f}})$ 



• SPGP covariance inverted in  $\mathcal{O}(M^2N) \ll \mathcal{O}(N^3) \Rightarrow$  much faster







#### Grids are tricky:

In high dimensions, one would need a LOT of inducing points to build a high-dimensional grid. This might drastically affect efficiency.

#### **Further reading:**

Wilson, Dann, Nickisch (2015). Thoughts on Massively Scalable Gaussian Processes Bauer, van der Wilk, Rasmussen (2016). Understanding Probabilistic Sparse Gaussian Process Approximations.



### Massively Scalable GPs: O(n) training, O(1) inference





# Running Exact GPs on GPUs (recent)

Key idea: Use a clever distributed GP learning and inference algorithm that runs on multiple GPUs.

| Dataset       | n         | d   | <b>RMSE</b> (random $= 1$ ) |                     |                          | <b>Training Time</b> |                              |                                   |      |     |
|---------------|-----------|-----|-----------------------------|---------------------|--------------------------|----------------------|------------------------------|-----------------------------------|------|-----|
|               |           |     | Exact GP<br>(BBMM)          | <b>SGPR</b> (m=512) | <b>SVGP</b><br>(m=1,024) | Exact GP<br>(BBMM)   | <b>SGPR</b> ( <i>m</i> =512) | <b>SVGP</b><br>( <i>m</i> =1,024) | #GPU | p   |
| PoleTele      | 9,600     | 26  | 0.154                       | 0.219               | 0.218                    | 22.1 s               | 40.6 s                       | 68.1 s                            | 1    | 1   |
| Elevators     | 10,623    | 18  | 0.374                       | 0.436               | 0.386                    | 17.1 s               | 41.2 s                       | 112 s                             | 1    | 1   |
| Bike          | 11,122    | 17  | 0.216                       | 0.345               | 0.261                    | 18.8 s               | 41.0 s                       | 109 s                             | 1    | 1   |
| Kin40K        | 25,600    | 8   | 0.093                       | 0.257               | 0.177                    | 83.3 s               | 56.1 s                       | 297 s                             | 1    | 1   |
| Protein       | 29,267    | 9   | 0.545                       | 0.659               | 0.640                    | 120 s                | 65.5 s                       | 300 s                             | 1    | 1   |
| KeggDirected  | 31,248    | 20  | 0.078                       | 0.089               | 0.083                    | 107 s                | 67.0 s                       | 345 s                             | 1    | 1   |
| CTslice       | 34,240    | 385 | 0.050                       | 0.199               | 1.011                    | 148 s                | 77.5 s                       | 137 s                             | 1    | 1   |
| KEGGU         | 40,708    | 27  | 0.120                       | 0.133               | 0.123                    | 50.8 s               | 84.9 s                       | 7.61 min                          | 8    | 1   |
| 3DRoad        | 278,319   | 3   | 0.106                       | 0.654               | 0.475                    | 7.06 hr              | 8.53 min                     | 22.1 min                          | 8    | 16  |
| Song          | 329,820   | 90  | 0.761                       | 0.803               | 0.999                    | 6.63 hr              | 9.38 min                     | 18.5 min                          | 8    | 16  |
| Buzz          | 373,280   | 77  | 0.265                       | 0.387               | 0.270                    | 11.5 hr              | 11.5 min                     | 1.19 hr                           | 8    | 19  |
| HouseElectric | 1,311,539 | 9   | 0.049                       |                     | 0.086                    | 3.29 days            |                              | 4.22 hr                           | 8    | 218 |



Wang et al. (2019). Exact Gaussian Processes on a Million Data Points (arXiv:1903.08114)



## **Gaussian Process Software**

#### 1) Classic MATLAB-based:

#### **Documentation for GPML Matlab Code version 4.2**

1) What?

The code provided here originally demonstrated the main algorithms from Rasmussen and Williams: <u>Gaussian Processes for Machine Learning</u>. It has since grown to allow more likelihood functions, further inference methods and a flexible framework for specifying GPs. Other GP packages can be found <u>here</u>.

The code is written by Carl Edward Rasmussen and Hannes Nickisch; it runs on both Octave 3.2.x and Matlab® 7.x and later. The code is based on previous versions written by Carl Edward Rasmussen and Chris Williams.

#### 2) Keras-based (GPs as DL layers!)



Keras + Gaussian Processes: Learning scalable deep and recurrent kernels.

keras theano tensorflow gaussian-processes neural-networks machine-learning Manage topics

#### 3) PyTorch-based



#### batch\_size = 256 features, labels = load\_spatial\_data(batch\_size) model = tf.keras.Sequential([ tf.keras.layers.Flatten(), # no spatial knowledge layers.SparseGaussianProcess(units=256, num\_inducing=512), layers.SparseGaussianProcess(units=256, num\_inducing=512), layers.SparseGaussianProcess(units=10, num\_inducing=512), layers.SparseGaussianProcess(units=10, num\_inducing=512), layers.SparseGaussianProcess(units=10, num\_inducing=512), layers.SparseGaussianProcess(units=10, num\_inducing=512), layers.SparseGaussianProcess(units=10, num\_inducing=512), loss = model(features) neg\_log\_likelihood = tf.losses.mean\_squared\_error(labels=labels, predictions=predictions) kl = sum(model.losses) loss = neg\_log\_likelihood + kl train\_op = tf.train.AdamOptimizer().minimize(loss) Figure: Deep GP

4) TensorFlow (T2T library)

internally sample from the function belief.

2 Gaussian Process Layers

GP layers map tensor to tensor and

Tran et al. (2018) arXiv:1812.03973



X

Gardner et al. (2018) arXiv:1809.11165



- Gaussian process are Bayesian nonparametric models that can represent distributions over smooth functions.
- Using expressive covariance kernel functions, GPs can model a variety of data (scalar, vector, sequential, structured, etc.).
- Inference can be done fully analytically (in case of Gaussian likelihood).
- Inference and learning are very computationally costly since exact methods require large matrix inversions.
- There is a variety of approximation methods to GPs that can bring down the learning and inference cost to O(n) and O(1), respectively.
- Many new libraries based on TF, PyTorch, Keras GP models despite computational constraints, GPs are certainly quite popular.







### Gaussian Process for Hyperparameter Tuning

01010001 Ω



- Existing methods
  - Grid search
  - Graduate student descent
- Problems
  - Time-consuming
  - Labor-intensive

© Eric Xing @ CMU, 2005-2020

## Automatic Hyperparameter Tuning

- Generalization performance (e.g., error rate) is a **function** of hyperparameters.
- If knowing this function, we can perform optimization to search for the optimal hyperparameters yielding the lowest error.
- □ This function is a black-box and (almost surely) has no closed-form solutions.
- Solution: use a highly-expressive and easily-operable proxy function to approximate the true function and perform optimization on the proxy function.
- Family of proxy functions: Gaussian Process



## Gaussian Process for Hyperparameter Tuning

 Obtain a set S of (hyperparameter-configuration, error) pairs using grid search or graduate student descent

### Repeat

- □ Fit a Gaussian process on the (hyperparameter, error) pairs in S
- Based on the fitted Gaussian process, select a hyperparameter configuration H and measure the error E given H
- Add the (H, E) pair to S



## How to select hyperparameter configuration?

Tradeoff between exploration and exploitation.

- Exploitation: search over the "promising" hyperparameter space
  - The "promising" space is more likely to contain the best hyperparameters.
  - Hyperparameter space yielding lower GP function values is more promising.
- Exploration: search over the entire hyperparameter space
  - The "promising" space may not contain the best hyperparameters.
  - Try other spaces as well
  - Space having more "uncertainty" is more worthwhile to try.







**Promising:** Hyperparameters yielding low GP **mean** 

**Uncertain:** Hyperparameters yielding large GP **variance** 







- Hyperparameters that are more promising and more uncertain have larger acquisition function value.
- Select the hyperparameter with the largest acquisition function value to try.







• Probability of Improvement (Kushner 1964):

$$a_{\mathsf{PI}}(x) = \Phi(\gamma(x))$$

•  $\Phi(\cdot)$  is the cumulative density function of a normal distribution.





• Expected Improvement (Mockus 1978):

$$a_{\mathsf{EI}}(x) = \sigma(x)(\gamma(x)\Phi(\gamma(x)) + \mathcal{N}(\gamma(x); 0, 1))$$

GP Upper Confidence Bound (Srinivas et al. 2010):

$$a_{\mathsf{LCB}}(x) = \mu(x) - \kappa \, \sigma(x)$$















































- Use GP to tune hyperparameters
- Iteratively fit GP to approximate the true hyperparameter-error function
- Select hyperparameters that have low GP mean and high GP variance to try
- Acquisition function simultaneously considers GP mean and variance.







### Elements of Meta-learning and Neural Processes

01010001 Ω

## Example: Fast Learning of Functions

- So far, we assumed that data was generated by a single function.
- What if there are <u>multiple data-generating functions</u>, and each time we get only a few points from one of them. Can we identify it?









• Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss

$$\hat{\phi} = \arg\min_{\phi} \mathbb{E}_{z \sim \mathcal{D}} \left[ l(f_{\phi}(z)) \right]$$

• Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description



## **Example: Few-shot Image Classification**

. . .

$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{T \sim \mathcal{P}} \left\{ \mathcal{L}_T[g_{\theta}(T)] \right\}, \text{ where}$$
$$\mathcal{L}_T[g_{\theta}(T)] := \mathbb{E}_{z \sim \mathcal{D}_T} \left[ l(f_{\phi}(z)) \right], \phi := g_{\theta}(T)$$





© Eric Xing @ CMU, 2005-2020





**CNP** architecture:





- There are cases when learning a single function is not enough contextual models are used in such case.
- Few-shot learning is a popular application of meta-learning, where contextual models are trained on distributions of different tasks.
   Examples:
  - Solve different sub-problems
  - Imitate different demonstrations
  - Make predictions about different user preferences
- Neural processes propose an alternative to kernel learning (kernel becomes fully implicit; the model is scalable without approximations)

