
Composing complicated “decision” 
boundaries

• Build a network of units with a single output 
that fires if the input is in the coloured area
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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Booleans over the reals

• The network must fire if the input is in the 
coloured area 
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More complex decision boundaries

• Network to fire if the input is in the yellow area
– “OR” two polygons
– A third layer is required
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Complex decision boundaries

• Can compose aƌbiƚƌaƌilǇ complex decision 
boundaries
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Complex decision boundaries

• Can compose aƌbiƚƌaƌilǇ complex decision 
boundaries
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Complex decision boundaries

• Can compose aƌbiƚƌaƌilǇ complex decision boundaries
– With onlǇ one hidden laǇeƌ͊
– How?
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Exercise: compose this with one 
hidden layer

• How would you compose the decision boundary 
to the left with only one hidden layer?
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Composing a Square decision 
boundary

• The polygon net
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Composing a pentagon

• The polygon net
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Composing a hexagon

• The polygon net
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How about a heptagon

• What are the sums in the different regions?
– A pattern emerges as we consider N х ϲ..

• N is the number of sides of the polygon
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1ϲ sides

• What are the sums in the different regions?
– A pattern emerges as we consider N х ϲ..
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ϲ4 sides

• What are the sums in the different regions?
– A pattern emerges as we consider N х ϲ..
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1000 sides

• What are the sums in the different regions?
– A pattern emerges as we consider N х ϲ..
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Composing a circle

• The circle net
– Very large number of neurons
– SƵm iƐ N inƐide ƚhe ciƌcle͕ NͬϮ oƵƚƐide almoƐƚ eǀeƌǇǁheƌe
– Circle can be at any location
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Composing a circle

• The circle net
– Very large number of neurons
– SƵm iƐ NͬϮ inƐide ƚhe ciƌcle͕ Ϭ oƵƚƐide almoƐƚ eǀeƌǇǁheƌe
– Circle can be at any location
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Composing an arbitrary figure

• Just fit in an arbitrary number of circles
– More accurate approximation with greater number of 

smaller circles
– Can achieve arbitrary precision
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MLP: Universal classifier

• MLPs can capture anǇ classification boundary
• A oneͲlaǇeƌ MLP can model any classification 

boundary
• MLPƐ aƌe ƵniǀeƌƐal claƐƐifieƌƐ ϵϳ
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MLP as a continuous-valued regression

• A simple ϯ-unit MLP with a “summing” output unit can 
generate a “square pulse” over an input
– Output is ϭ only if the input lies between Tϭ and TϮ

– Tϭ and TϮ can be arbitrarily specified
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MLP as a continuous-valued regression

• A simple ϯ-unit MLP can generate a “square pulse” over an input
• An MLP with many units can model an arbitrary function over an input

– To arbitrary precision
• Simply make the individual pulses narrower

• A ŽŶeͲůaǇeƌ MLP caŶ ŵŽdeů aŶ aƌbiƚƌaƌǇ fƵŶcƚiŽŶ Žf a ƐiŶgůe iŶƉƵƚ
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For higher dimensions

• An MLP can compose a cylinder
– in the circle,  Ϭ outside

N/2

0

н

1
-N/Ϯ

ϭϭϵ



MLP as a continuous-valued function

• MLPs can actually compose arbitrary functions in any number of 
dimensions!
– Even with only one layer

• As sums of scaled and shifted cylinders

– To arbitrary precision
• By making the cylinders thinner

– The MLP is a universal approximator!
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