Composing complicated "decision" boundaries

Can now be composed into "networks" to compute arbitrary classification "boundaries"

• Build a network of units with a single output that fires if the input is in the coloured area

More complex decision boundaries

- Network to fire if the input is in the yellow area
 - "OR" two polygons
 - A third layer is required

Complex decision boundaries

• Can compose *arbitrarily* complex decision boundaries

Complex decision boundaries

• Can compose *arbitrarily* complex decision boundaries

Complex decision boundaries

- Can compose *arbitrarily* complex decision boundaries
 - With only one hidden layer!
 - **How**?

Exercise: compose this with one hidden layer

 How would you compose the decision boundary to the left with only *one* hidden layer?

Composing a Square decision boundary

• The polygon net

84

Composing a pentagon

Composing a hexagon

• The polygon net

How about a heptagon

- What are the sums in the different regions?
 - A pattern emerges as we consider N > 6..
 - N is the number of sides of the polygon

- What are the sums in the different regions?
 - A pattern emerges as we consider N > 6..

- What are the sums in the different regions?
 - A pattern emerges as we consider N > 6..

1000 sides

• What are the sums in the different regions?

A pattern emerges as we consider N > 6..

Composing a circle

- The circle net
 - Very large number of neurons
 - Sum is N inside the circle, N/2 outside almost everywhere
 - Circle can be at any location

Composing a circle

- The circle net
 - Very large number of neurons
 - Sum is N/2 inside the circle, 0 outside almost everywhere
 - Circle can be at any location

Composing an arbitrary figure

- Just fit in an arbitrary number of circles
 - More accurate approximation with greater number of smaller circles
 - Can achieve arbitrary precision

MLP: Universal classifier

- MLPs can capture *any* classification boundary
- A *one-layer MLP* can model any classification boundary
- MLPs are universal classifiers

MLP as a continuous-valued regression

- A simple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
 - Output is 1 only if the input lies between T_1 and T_2
 - T_1 and T_2 can be arbitrarily specified

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- An MLP with many units can model an arbitrary function over an input
 - To arbitrary precision
 - Simply make the individual pulses narrower
- A one-layer MLP can model an arbitrary function of a single input

For higher dimensions

• An MLP can compose a cylinder -N/2 in the circle, 0 outside

MLP as a continuous-valued function

- MLPs can actually compose arbitrary functions in any number of dimensions!
 - Even with only one layer
 - As sums of scaled and shifted cylinders
 - To arbitrary precision
 - By making the cylinders thinner
 - The MLP is a universal approximator!